Initial commit: Cloudflare infrastructure with WAF Intelligence
- Complete Cloudflare Terraform configuration (DNS, WAF, tunnels, access) - WAF Intelligence MCP server with threat analysis and ML classification - GitOps automation with PR workflows and drift detection - Observatory monitoring stack with Prometheus/Grafana - IDE operator rules for governed development - Security playbooks and compliance frameworks - Autonomous remediation and state reconciliation
This commit is contained in:
185
mcp/oracle_answer/tool.py
Normal file
185
mcp/oracle_answer/tool.py
Normal file
@@ -0,0 +1,185 @@
|
||||
"""
|
||||
Core oracle tool implementation with NVIDIA AI integration.
|
||||
|
||||
This module contains the logic that answers compliance questions using
|
||||
NVIDIA's API (free tier from build.nvidia.com).
|
||||
|
||||
Separate from CLI/API wrapper for clean testability.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
try:
|
||||
import httpx
|
||||
except ImportError:
|
||||
httpx = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class ToolResponse:
|
||||
"""Canonical response from the oracle tool."""
|
||||
|
||||
answer: str
|
||||
framework_hits: Dict[str, List[str]]
|
||||
reasoning: Optional[str] = None
|
||||
raw_context: Optional[Dict[str, Any]] = None
|
||||
model: str = "nvidia"
|
||||
|
||||
|
||||
class OracleAnswerTool:
|
||||
"""
|
||||
Compliance / security oracle powered by NVIDIA AI.
|
||||
|
||||
This tool:
|
||||
- takes `question`, `frameworks`, `mode`, etc.
|
||||
- queries NVIDIA's LLM API (free tier)
|
||||
- searches local documentation for context
|
||||
- assembles structured ToolResponse with framework mapping
|
||||
"""
|
||||
|
||||
# NVIDIA API configuration
|
||||
NVIDIA_API_BASE = "https://integrate.api.nvidia.com/v1"
|
||||
NVIDIA_MODEL = "meta/llama-2-7b-chat" # Free tier model
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
default_frameworks: Optional[List[str]] = None,
|
||||
api_key: Optional[str] = None,
|
||||
use_local_only: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize oracle with NVIDIA API integration.
|
||||
|
||||
Args:
|
||||
default_frameworks: Default compliance frameworks to use
|
||||
api_key: NVIDIA API key (defaults to NVIDIA_API_KEY env var)
|
||||
use_local_only: If True, skip LLM calls (for testing)
|
||||
"""
|
||||
self.default_frameworks = default_frameworks or ["NIST-CSF", "ISO-27001"]
|
||||
self.api_key = api_key or os.environ.get("NVIDIA_API_KEY")
|
||||
self.use_local_only = use_local_only
|
||||
|
||||
if not self.use_local_only and not self.api_key:
|
||||
raise ValueError(
|
||||
"NVIDIA_API_KEY not found. Set it in .env or pass api_key parameter."
|
||||
)
|
||||
|
||||
def _extract_framework_hits(
|
||||
self, answer: str, frameworks: List[str]
|
||||
) -> Dict[str, List[str]]:
|
||||
"""Extract mentions of frameworks from the LLM answer."""
|
||||
hits = {fw: [] for fw in frameworks}
|
||||
answer_lower = answer.lower()
|
||||
|
||||
for framework in frameworks:
|
||||
# Simple keyword matching for framework mentions
|
||||
if framework.lower() in answer_lower:
|
||||
# Extract sentences containing the framework
|
||||
sentences = answer.split(".")
|
||||
for sentence in sentences:
|
||||
if framework.lower() in sentence.lower():
|
||||
hits[framework].append(sentence.strip())
|
||||
|
||||
return hits
|
||||
|
||||
async def _call_nvidia_api(self, prompt: str) -> str:
|
||||
"""Call NVIDIA's API to get LLM response."""
|
||||
if self.use_local_only:
|
||||
return "Local-only mode: skipping NVIDIA API call"
|
||||
|
||||
if not httpx:
|
||||
raise ImportError("httpx not installed. Install with: pip install httpx")
|
||||
|
||||
headers = {
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Accept": "application/json",
|
||||
}
|
||||
|
||||
payload = {
|
||||
"model": self.NVIDIA_MODEL,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0.7,
|
||||
"top_p": 0.9,
|
||||
"max_tokens": 1024,
|
||||
}
|
||||
|
||||
try:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
f"{self.NVIDIA_API_BASE}/chat/completions",
|
||||
json=payload,
|
||||
headers=headers,
|
||||
timeout=30.0,
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data["choices"][0]["message"]["content"]
|
||||
except Exception as e:
|
||||
return f"(API Error: {str(e)}) Falling back to local analysis..."
|
||||
|
||||
async def answer(
|
||||
self,
|
||||
question: str,
|
||||
frameworks: Optional[List[str]] = None,
|
||||
mode: str = "strict",
|
||||
) -> ToolResponse:
|
||||
"""
|
||||
Main entry point for MCP / clients.
|
||||
|
||||
Args:
|
||||
question: Compliance question to answer
|
||||
frameworks: Frameworks to reference (default: NIST-CSF, ISO-27001)
|
||||
mode: "strict" (conservative) or "advisory" (exploratory)
|
||||
|
||||
Returns:
|
||||
ToolResponse with answer, framework hits, and reasoning
|
||||
"""
|
||||
frameworks = frameworks or self.default_frameworks
|
||||
|
||||
# Build context-aware prompt for NVIDIA API
|
||||
mode_instruction = (
|
||||
"conservative and cautious, assuming worst-case scenarios"
|
||||
if mode == "strict"
|
||||
else "exploratory and comprehensive"
|
||||
)
|
||||
|
||||
prompt = f"""You are a compliance and security expert analyzing infrastructure questions.
|
||||
|
||||
Question: {question}
|
||||
|
||||
Compliance Frameworks to Consider:
|
||||
{chr(10).join(f"- {fw}" for fw in frameworks)}
|
||||
|
||||
Analysis Mode: {mode_instruction}
|
||||
|
||||
Provide a structured answer that:
|
||||
1. Directly addresses the question
|
||||
2. References the relevant frameworks
|
||||
3. Identifies gaps or risks
|
||||
4. Suggests mitigations where applicable
|
||||
|
||||
Be concise but thorough."""
|
||||
|
||||
# Call NVIDIA API for actual LLM response
|
||||
answer = await self._call_nvidia_api(prompt)
|
||||
|
||||
# Extract framework mentions from the response
|
||||
framework_hits = self._extract_framework_hits(answer, frameworks)
|
||||
|
||||
# Generate reasoning based on mode
|
||||
reasoning = (
|
||||
f"Analyzed question against frameworks: {', '.join(frameworks)}. "
|
||||
f"Mode={mode}. Used NVIDIA LLM for compliance analysis."
|
||||
)
|
||||
|
||||
return ToolResponse(
|
||||
answer=answer,
|
||||
framework_hits=framework_hits,
|
||||
reasoning=reasoning,
|
||||
model="nvidia/llama-2-7b-chat",
|
||||
)
|
||||
Reference in New Issue
Block a user