Initial commit: Cloudflare infrastructure with WAF Intelligence

- Complete Cloudflare Terraform configuration (DNS, WAF, tunnels, access)
- WAF Intelligence MCP server with threat analysis and ML classification
- GitOps automation with PR workflows and drift detection
- Observatory monitoring stack with Prometheus/Grafana
- IDE operator rules for governed development
- Security playbooks and compliance frameworks
- Autonomous remediation and state reconciliation
This commit is contained in:
Vault Sovereign
2025-12-16 18:31:53 +00:00
commit 37a867c485
123 changed files with 25407 additions and 0 deletions

View File

@@ -0,0 +1,370 @@
from __future__ import annotations
import os
from dataclasses import dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List, Optional
from mcp.waf_intelligence.analyzer import AnalysisResult, RuleViolation, WAFRuleAnalyzer
from mcp.waf_intelligence.compliance import ComplianceMapper, FrameworkMapping
from mcp.waf_intelligence.generator import GeneratedRule, WAFRuleGenerator
# Optional advanced modules (Phase 7)
try:
from mcp.waf_intelligence.threat_intel import (
ThreatIntelCollector,
ThreatIntelReport,
ThreatIndicator,
)
_HAS_THREAT_INTEL = True
except ImportError:
_HAS_THREAT_INTEL = False
ThreatIntelCollector = None
try:
from mcp.waf_intelligence.classifier import (
ThreatClassifier,
ClassificationResult,
)
_HAS_CLASSIFIER = True
except ImportError:
_HAS_CLASSIFIER = False
ThreatClassifier = None
@dataclass
class WAFInsight:
"""Single high-quality insight across analysis + generation + compliance."""
violation: RuleViolation | None
suggested_rule: GeneratedRule | None
mappings: List[FrameworkMapping]
@dataclass
class ThreatAssessment:
"""Phase 7: Comprehensive threat assessment result."""
analysis_result: Optional[AnalysisResult] = None
threat_report: Optional[Any] = None # ThreatIntelReport when available
classification_summary: Dict[str, int] = field(default_factory=dict)
risk_score: float = 0.0
recommended_actions: List[str] = field(default_factory=list)
generated_at: datetime = field(default_factory=datetime.utcnow)
@property
def risk_level(self) -> str:
if self.risk_score >= 0.8:
return "critical"
elif self.risk_score >= 0.6:
return "high"
elif self.risk_score >= 0.4:
return "medium"
else:
return "low"
class WAFIntelligence:
"""
Quality-first orchestration layer:
- analyze WAF config
- propose a few rules
- attach compliance mappings
- Phase 7: integrate threat intel and ML classification
"""
def __init__(
self,
workspace_path: Optional[str] = None,
enable_threat_intel: bool = True,
enable_ml_classifier: bool = True,
) -> None:
self.workspace = Path(workspace_path) if workspace_path else Path.cwd()
# Core components
self.analyzer = WAFRuleAnalyzer()
self.generator = WAFRuleGenerator()
self.mapper = ComplianceMapper()
# Phase 7 components (optional)
self.threat_intel: Optional[Any] = None
self.classifier: Optional[Any] = None
if enable_threat_intel and _HAS_THREAT_INTEL:
try:
self.threat_intel = ThreatIntelCollector()
except Exception:
pass
if enable_ml_classifier and _HAS_CLASSIFIER:
try:
self.classifier = ThreatClassifier()
except Exception:
pass
def analyze_and_recommend(
self,
path: str,
*,
limit: int = 3,
min_severity: str = "warning",
) -> List[WAFInsight]:
analysis: AnalysisResult = self.analyzer.analyze_file(
path,
min_severity=min_severity,
)
top_violations = analysis.top_violations(
min_severity=min_severity,
limit=limit,
)
insights: List[WAFInsight] = []
for violation in top_violations:
mappings = self.mapper.best_effort_from_violation(violation.message)
scenario = violation.message
rules = self.generator.generate_from_scenario(scenario, limit=1)
suggested = rules[0] if rules else None
insights.append(
WAFInsight(
violation=violation,
suggested_rule=suggested,
mappings=mappings,
)
)
return insights
# ─────────────────────────────────────────────────────────────────────────
# Phase 7: Advanced threat intelligence methods
# ─────────────────────────────────────────────────────────────────────────
def collect_threat_intel(
self,
log_paths: Optional[List[str]] = None,
max_indicators: int = 100,
) -> Optional[Any]:
"""
Collect threat intelligence from logs and external feeds.
Args:
log_paths: Paths to Cloudflare log files
max_indicators: Maximum indicators to collect
Returns:
ThreatIntelReport or None if unavailable
"""
if not self.threat_intel:
return None
# Default log paths
if log_paths is None:
log_paths = [
str(self.workspace / "logs"),
"/var/log/cloudflare",
]
return self.threat_intel.collect(
log_paths=log_paths,
max_indicators=max_indicators,
)
def classify_threat(self, payload: str) -> Optional[Any]:
"""
Classify a payload using ML classifier.
Args:
payload: Request payload to classify
Returns:
ClassificationResult or None
"""
if not self.classifier:
return None
return self.classifier.classify(payload)
def full_assessment(
self,
waf_config_path: Optional[str] = None,
log_paths: Optional[List[str]] = None,
include_threat_intel: bool = True,
) -> ThreatAssessment:
"""
Phase 7: Perform comprehensive threat assessment.
Combines:
- WAF configuration analysis
- Threat intelligence collection
- ML classification summary
- Risk scoring
Args:
waf_config_path: Path to WAF Terraform file
log_paths: Paths to log files
include_threat_intel: Whether to collect threat intel
Returns:
ThreatAssessment with full analysis results
"""
assessment = ThreatAssessment()
risk_factors: List[float] = []
recommendations: List[str] = []
# 1. Analyze WAF configuration
if waf_config_path is None:
waf_config_path = str(self.workspace / "terraform" / "waf.tf")
if Path(waf_config_path).exists():
assessment.analysis_result = self.analyzer.analyze_file(
waf_config_path,
min_severity="info",
)
# Calculate risk from violations
severity_weights = {"error": 0.8, "warning": 0.5, "info": 0.2}
for violation in assessment.analysis_result.violations:
weight = severity_weights.get(violation.severity, 0.3)
risk_factors.append(weight)
# Generate recommendations
critical_count = sum(
1 for v in assessment.analysis_result.violations
if v.severity == "error"
)
if critical_count > 0:
recommendations.append(
f"🔴 Fix {critical_count} critical WAF configuration issues"
)
# 2. Collect threat intelligence
if include_threat_intel and self.threat_intel:
try:
assessment.threat_report = self.collect_threat_intel(
log_paths=log_paths,
max_indicators=50,
)
if assessment.threat_report:
indicators = assessment.threat_report.indicators
# Count by severity
severity_counts = {"critical": 0, "high": 0, "medium": 0, "low": 0}
for ind in indicators:
sev = getattr(ind, "severity", "low")
severity_counts[sev] = severity_counts.get(sev, 0) + 1
# Add to classification summary
assessment.classification_summary["threat_indicators"] = len(indicators)
assessment.classification_summary.update(severity_counts)
# Calculate threat intel risk
if indicators:
critical_ratio = severity_counts["critical"] / len(indicators)
high_ratio = severity_counts["high"] / len(indicators)
risk_factors.append(critical_ratio * 0.9 + high_ratio * 0.7)
if severity_counts["critical"] > 0:
recommendations.append(
f"🚨 Block {severity_counts['critical']} critical threat IPs immediately"
)
except Exception:
pass
# 3. ML classification summary (from any collected data)
if self.classifier and assessment.threat_report:
try:
attack_types = {"sqli": 0, "xss": 0, "rce": 0, "clean": 0, "unknown": 0}
indicators = assessment.threat_report.indicators
pattern_indicators = [
i for i in indicators
if getattr(i, "indicator_type", "") == "pattern"
]
for ind in pattern_indicators[:20]: # Sample first 20
result = self.classifier.classify(ind.value)
if result:
label = result.label
attack_types[label] = attack_types.get(label, 0) + 1
assessment.classification_summary["ml_classifications"] = attack_types
# Add ML risk factor
dangerous = attack_types.get("sqli", 0) + attack_types.get("rce", 0)
if dangerous > 5:
risk_factors.append(0.8)
recommendations.append(
f"⚠️ ML detected {dangerous} dangerous attack patterns"
)
except Exception:
pass
# 4. Calculate final risk score
if risk_factors:
assessment.risk_score = min(1.0, sum(risk_factors) / max(len(risk_factors), 1))
else:
assessment.risk_score = 0.3 # Baseline risk
assessment.recommended_actions = recommendations
return assessment
def generate_gitops_proposals(
self,
threat_report: Optional[Any] = None,
max_proposals: int = 5,
) -> List[Dict[str, Any]]:
"""
Generate GitOps-ready rule proposals.
Args:
threat_report: ThreatIntelReport to use
max_proposals: Maximum proposals to generate
Returns:
List of proposal dicts ready for MR creation
"""
proposals: List[Dict[str, Any]] = []
if not threat_report:
return proposals
try:
# Import proposer dynamically
from gitops.waf_rule_proposer import WAFRuleProposer
proposer = WAFRuleProposer(workspace_path=str(self.workspace))
batch = proposer.generate_proposals(
threat_report=threat_report,
max_proposals=max_proposals,
)
for proposal in batch.proposals:
proposals.append({
"name": proposal.rule_name,
"type": proposal.rule_type,
"severity": proposal.severity,
"confidence": proposal.confidence,
"terraform": proposal.terraform_code,
"justification": proposal.justification,
"auto_deploy": proposal.auto_deploy_eligible,
})
except ImportError:
pass
return proposals
@property
def capabilities(self) -> Dict[str, bool]:
"""Report available capabilities."""
return {
"core_analysis": True,
"rule_generation": True,
"compliance_mapping": True,
"threat_intel": self.threat_intel is not None,
"ml_classification": self.classifier is not None,
}