chore: pre-migration snapshot
Some checks failed
WAF Intelligence Guardrail / waf-intel (push) Waiting to run
Cloudflare Registry Validation / validate-registry (push) Has been cancelled

Layer0, MCP servers, Terraform consolidation
This commit is contained in:
Vault Sovereign
2025-12-27 01:52:27 +00:00
parent 7f2e60e1c5
commit f0b8d962de
67 changed files with 14887 additions and 650 deletions

View File

@@ -1,110 +1,15 @@
#!/usr/bin/env python3
from __future__ import annotations
import glob
from dataclasses import asdict
from typing import Any, Dict, List
"""
WAF Intelligence MCP Server entrypoint.
from modelcontextprotocol.python import Server
from mcp.waf_intelligence.orchestrator import WAFInsight, WAFIntelligence
from layer0 import layer0_entry
from layer0.shadow_classifier import ShadowEvalResult
This wrapper intentionally avoids third-party MCP SDK dependencies and delegates to the
in-repo stdio JSON-RPC implementation at `mcp.waf_intelligence.mcp_server`.
"""
server = Server("waf_intel")
def _insight_to_dict(insight: WAFInsight) -> Dict[str, Any]:
"""Convert a WAFInsight dataclass into a plain dict."""
return asdict(insight)
@server.tool()
async def analyze_waf(
file: str | None = None,
files: List[str] | None = None,
limit: int = 3,
severity_threshold: str = "warning",
) -> Dict[str, Any]:
"""
Analyze one or more Terraform WAF files and return curated insights.
Args:
file: Single file path (e.g. "terraform/waf.tf").
files: Optional list of file paths or glob patterns (e.g. ["terraform/waf*.tf"]).
limit: Max number of high-priority insights to return.
severity_threshold: Minimum severity to include ("info", "warning", "error").
Returns:
{
"results": [
{
"file": "...",
"insights": [ ... ]
},
...
]
}
"""
routing_action, shadow = layer0_entry(_shadow_repr(file, files, limit, severity_threshold))
if routing_action != "HANDOFF_TO_LAYER1":
_raise_layer0(routing_action, shadow)
paths: List[str] = []
if files:
for pattern in files:
for matched in glob.glob(pattern):
paths.append(matched)
if file:
paths.append(file)
seen = set()
unique_paths: List[str] = []
for p in paths:
if p not in seen:
seen.add(p)
unique_paths.append(p)
if not unique_paths:
raise ValueError("Please provide 'file' or 'files' to analyze.")
intel = WAFIntelligence()
results: List[Dict[str, Any]] = []
for path in unique_paths:
insights: List[WAFInsight] = intel.analyze_and_recommend(
path,
limit=limit,
min_severity=severity_threshold,
)
results.append(
{
"file": path,
"insights": [_insight_to_dict(insight) for insight in insights],
}
)
return {"results": results}
from cloudflare.mcp.waf_intelligence.mcp_server import main
if __name__ == "__main__":
server.run()
def _shadow_repr(file: str | None, files: List[str] | None, limit: int, severity: str) -> str:
try:
return f"analyze_waf: file={file}, files={files}, limit={limit}, severity={severity}"
except Exception:
return "analyze_waf"
def _raise_layer0(routing_action: str, shadow: ShadowEvalResult) -> None:
if routing_action == "FAIL_CLOSED":
raise ValueError("Layer 0: cannot comply with this request.")
if routing_action == "HANDOFF_TO_GUARDRAILS":
reason = shadow.reason or "governance_violation"
raise ValueError(f"Layer 0: governance violation detected ({reason}).")
if routing_action == "PROMPT_FOR_CLARIFICATION":
raise ValueError("Layer 0: request is ambiguous. Please clarify and retry.")
raise ValueError("Layer 0: unrecognized routing action; refusing request.")
main()