- Complete Cloudflare Terraform configuration (DNS, WAF, tunnels, access) - WAF Intelligence MCP server with threat analysis and ML classification - GitOps automation with PR workflows and drift detection - Observatory monitoring stack with Prometheus/Grafana - IDE operator rules for governed development - Security playbooks and compliance frameworks - Autonomous remediation and state reconciliation
566 lines
20 KiB
Python
566 lines
20 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Phase 7: WAF Rule Proposer for GitOps Integration
|
|
|
|
Generates Terraform WAF rules based on:
|
|
- Threat intelligence indicators
|
|
- ML classification results
|
|
- Compliance requirements
|
|
- Existing rule gaps
|
|
|
|
Integrates with Phase 6 GitOps to create automated MRs.
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import os
|
|
import re
|
|
from dataclasses import dataclass, field
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Set
|
|
|
|
# Import sibling modules
|
|
import sys
|
|
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
|
|
|
# Type imports with fallbacks for standalone testing
|
|
_HAS_WAF_INTEL = False
|
|
try:
|
|
from mcp.waf_intelligence.threat_intel import ThreatIndicator, ThreatIntelReport
|
|
from mcp.waf_intelligence.classifier import ClassificationResult, ThreatClassifier
|
|
from mcp.waf_intelligence.generator import GeneratedRule, WAFRuleGenerator
|
|
from mcp.waf_intelligence.compliance import ComplianceMapper, FrameworkMapping
|
|
_HAS_WAF_INTEL = True
|
|
except ImportError:
|
|
pass
|
|
|
|
# TYPE_CHECKING block for type hints when modules unavailable
|
|
from typing import TYPE_CHECKING
|
|
if TYPE_CHECKING:
|
|
from mcp.waf_intelligence.threat_intel import ThreatIndicator, ThreatIntelReport
|
|
from mcp.waf_intelligence.classifier import ClassificationResult, ThreatClassifier
|
|
|
|
|
|
@dataclass
|
|
class RuleProposal:
|
|
"""A proposed WAF rule with full context for GitOps review."""
|
|
|
|
rule_name: str
|
|
rule_type: str # "ip_block", "pattern_block", "rate_limit", "managed_rule"
|
|
terraform_code: str
|
|
severity: str # "low", "medium", "high", "critical"
|
|
confidence: float
|
|
justification: str
|
|
threat_indicators: List[str] = field(default_factory=list)
|
|
compliance_refs: List[str] = field(default_factory=list)
|
|
estimated_impact: str = ""
|
|
auto_deploy_eligible: bool = False
|
|
tags: List[str] = field(default_factory=list)
|
|
|
|
def to_markdown(self) -> str:
|
|
"""Render proposal as Markdown for MR description."""
|
|
emoji = {"critical": "🔴", "high": "🟠", "medium": "🟡", "low": "🟢"}.get(self.severity, "⚪")
|
|
|
|
md = f"""### {emoji} {self.rule_name}
|
|
|
|
**Type:** `{self.rule_type}` | **Severity:** `{self.severity}` | **Confidence:** `{self.confidence:.0%}`
|
|
|
|
**Justification:**
|
|
{self.justification}
|
|
|
|
**Compliance:** {', '.join(self.compliance_refs) or 'N/A'}
|
|
|
|
**Estimated Impact:** {self.estimated_impact or 'Unknown'}
|
|
|
|
<details>
|
|
<summary>Terraform Code</summary>
|
|
|
|
```hcl
|
|
{self.terraform_code}
|
|
```
|
|
|
|
</details>
|
|
|
|
**Tags:** {', '.join(f'`{t}`' for t in self.tags) or 'None'}
|
|
|
|
---
|
|
"""
|
|
return md
|
|
|
|
|
|
@dataclass
|
|
class ProposalBatch:
|
|
"""Batch of rule proposals for a single MR."""
|
|
|
|
proposals: List[RuleProposal] = field(default_factory=list)
|
|
generated_at: datetime = field(default_factory=datetime.utcnow)
|
|
source_report: Optional[str] = None
|
|
metadata: Dict[str, Any] = field(default_factory=dict)
|
|
|
|
@property
|
|
def critical_count(self) -> int:
|
|
return sum(1 for p in self.proposals if p.severity == "critical")
|
|
|
|
@property
|
|
def auto_deployable(self) -> List[RuleProposal]:
|
|
return [p for p in self.proposals if p.auto_deploy_eligible]
|
|
|
|
def to_markdown(self) -> str:
|
|
"""Generate full MR description."""
|
|
header = f"""# WAF Rule Proposals - Phase 7 Intelligence
|
|
|
|
**Generated:** {self.generated_at.strftime('%Y-%m-%d %H:%M:%S UTC')}
|
|
**Total Proposals:** {len(self.proposals)}
|
|
**Critical:** {self.critical_count}
|
|
**Auto-Deploy Eligible:** {len(self.auto_deployable)}
|
|
|
|
---
|
|
|
|
## Summary
|
|
|
|
| Rule | Type | Severity | Confidence | Auto-Deploy |
|
|
|------|------|----------|------------|-------------|
|
|
"""
|
|
for p in self.proposals:
|
|
auto = "✅" if p.auto_deploy_eligible else "❌"
|
|
header += f"| {p.rule_name} | {p.rule_type} | {p.severity} | {p.confidence:.0%} | {auto} |\n"
|
|
|
|
header += "\n---\n\n## Detailed Proposals\n\n"
|
|
|
|
for p in self.proposals:
|
|
header += p.to_markdown() + "\n"
|
|
|
|
return header
|
|
|
|
def to_terraform_file(self) -> str:
|
|
"""Generate combined Terraform file."""
|
|
header = f"""# Auto-generated WAF rules from Phase 7 Intelligence
|
|
# Generated: {self.generated_at.strftime('%Y-%m-%d %H:%M:%S UTC')}
|
|
# Review carefully before applying
|
|
|
|
"""
|
|
return header + "\n\n".join(p.terraform_code for p in self.proposals)
|
|
|
|
|
|
class WAFRuleProposer:
|
|
"""
|
|
Generates WAF rule proposals from threat intelligence and ML analysis.
|
|
|
|
Usage:
|
|
proposer = WAFRuleProposer(workspace_path="/path/to/cloudflare")
|
|
batch = proposer.generate_proposals(threat_report)
|
|
print(batch.to_markdown())
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
workspace_path: Optional[str] = None,
|
|
zone_id_var: str = "var.zone_id",
|
|
account_id_var: str = "var.cloudflare_account_id",
|
|
):
|
|
self.workspace = Path(workspace_path) if workspace_path else Path.cwd()
|
|
self.zone_id_var = zone_id_var
|
|
self.account_id_var = account_id_var
|
|
|
|
# Initialize components only if available
|
|
self.classifier = None
|
|
self.rule_generator = None
|
|
self.compliance_mapper = None
|
|
|
|
if _HAS_WAF_INTEL:
|
|
try:
|
|
self.classifier = ThreatClassifier()
|
|
except Exception:
|
|
pass
|
|
try:
|
|
self.rule_generator = WAFRuleGenerator()
|
|
except Exception:
|
|
pass
|
|
try:
|
|
self.compliance_mapper = ComplianceMapper()
|
|
except Exception:
|
|
pass
|
|
|
|
# Auto-deploy thresholds
|
|
self.auto_deploy_min_confidence = 0.85
|
|
self.auto_deploy_severities = {"critical", "high"}
|
|
|
|
def generate_proposals(
|
|
self,
|
|
threat_report: Optional[Any] = None,
|
|
indicators: Optional[List[Any]] = None,
|
|
max_proposals: int = 10,
|
|
) -> ProposalBatch:
|
|
"""
|
|
Generate rule proposals from threat intelligence.
|
|
|
|
Args:
|
|
threat_report: Full threat intel report
|
|
indicators: Or just a list of indicators
|
|
max_proposals: Maximum number of proposals to generate
|
|
|
|
Returns:
|
|
ProposalBatch ready for GitOps MR
|
|
"""
|
|
proposals: List[RuleProposal] = []
|
|
|
|
# Get indicators from report or directly
|
|
if threat_report:
|
|
all_indicators = threat_report.indicators
|
|
elif indicators:
|
|
all_indicators = indicators
|
|
else:
|
|
all_indicators = []
|
|
|
|
# Group indicators by type
|
|
ip_indicators = [i for i in all_indicators if i.indicator_type == "ip"]
|
|
pattern_indicators = [i for i in all_indicators if i.indicator_type == "pattern"]
|
|
ua_indicators = [i for i in all_indicators if i.indicator_type == "ua"]
|
|
|
|
# Generate IP blocking rules
|
|
proposals.extend(self._generate_ip_rules(ip_indicators))
|
|
|
|
# Generate pattern-based rules
|
|
proposals.extend(self._generate_pattern_rules(pattern_indicators))
|
|
|
|
# Generate user-agent rules
|
|
proposals.extend(self._generate_ua_rules(ua_indicators))
|
|
|
|
# Generate managed rule recommendations
|
|
proposals.extend(self._generate_managed_rule_proposals(all_indicators))
|
|
|
|
# Sort by severity and confidence
|
|
severity_order = {"critical": 4, "high": 3, "medium": 2, "low": 1}
|
|
proposals.sort(
|
|
key=lambda p: (severity_order.get(p.severity, 0), p.confidence),
|
|
reverse=True
|
|
)
|
|
|
|
return ProposalBatch(
|
|
proposals=proposals[:max_proposals],
|
|
source_report=str(threat_report.collection_time) if threat_report else None,
|
|
metadata={
|
|
"total_indicators": len(all_indicators),
|
|
"ip_indicators": len(ip_indicators),
|
|
"pattern_indicators": len(pattern_indicators),
|
|
}
|
|
)
|
|
|
|
def _generate_ip_rules(self, indicators: List[Any]) -> List[RuleProposal]:
|
|
"""Generate IP blocking rules."""
|
|
proposals: List[RuleProposal] = []
|
|
|
|
# Group by severity
|
|
critical_ips = [i for i in indicators if i.severity == "critical"]
|
|
high_ips = [i for i in indicators if i.severity == "high"]
|
|
|
|
# Critical IPs - individual block rules
|
|
for ind in critical_ips[:5]: # Limit to top 5
|
|
rule_name = f"waf_block_ip_{ind.value.replace('.', '_')}"
|
|
terraform = self._ip_block_terraform(rule_name, [ind.value], "block")
|
|
|
|
proposals.append(RuleProposal(
|
|
rule_name=rule_name,
|
|
rule_type="ip_block",
|
|
terraform_code=terraform,
|
|
severity="critical",
|
|
confidence=ind.confidence,
|
|
justification=f"Critical threat actor IP detected. Sources: {', '.join(ind.sources)}. "
|
|
f"Hit count: {ind.hit_count}. {ind.context.get('abuse_score', 'N/A')} abuse score.",
|
|
threat_indicators=[ind.value],
|
|
compliance_refs=["Zero-Trust", "Threat Intelligence"],
|
|
estimated_impact="Blocks all traffic from this IP",
|
|
auto_deploy_eligible=ind.confidence >= self.auto_deploy_min_confidence,
|
|
tags=["auto-generated", "threat-intel", "ip-block"]
|
|
))
|
|
|
|
# Batch high-severity IPs into one rule
|
|
if high_ips:
|
|
ips = [i.value for i in high_ips[:20]] # Limit batch size
|
|
rule_name = "waf_block_high_risk_ips"
|
|
terraform = self._ip_block_terraform(rule_name, ips, "block")
|
|
|
|
avg_confidence = sum(i.confidence for i in high_ips[:20]) / len(high_ips[:20])
|
|
|
|
proposals.append(RuleProposal(
|
|
rule_name=rule_name,
|
|
rule_type="ip_block",
|
|
terraform_code=terraform,
|
|
severity="high",
|
|
confidence=avg_confidence,
|
|
justification=f"Batch block of {len(ips)} high-risk IPs from threat intelligence.",
|
|
threat_indicators=ips,
|
|
compliance_refs=["Zero-Trust", "Threat Intelligence"],
|
|
estimated_impact=f"Blocks traffic from {len(ips)} IPs",
|
|
auto_deploy_eligible=False, # Batch rules require manual review
|
|
tags=["auto-generated", "threat-intel", "ip-block", "batch"]
|
|
))
|
|
|
|
return proposals
|
|
|
|
def _generate_pattern_rules(self, indicators: List[Any]) -> List[RuleProposal]:
|
|
"""Generate pattern-based blocking rules."""
|
|
proposals: List[RuleProposal] = []
|
|
|
|
# Group by attack type
|
|
attack_types: Dict[str, List[Any]] = {}
|
|
for ind in indicators:
|
|
for tag in ind.tags:
|
|
if tag in ("sqli", "xss", "rce", "path_traversal"):
|
|
attack_types.setdefault(tag, []).append(ind)
|
|
|
|
# Generate rules per attack type
|
|
for attack_type, inds in attack_types.items():
|
|
if not inds:
|
|
continue
|
|
|
|
# Use ML classifier to validate if available
|
|
if self.classifier:
|
|
# Classify a sample to confirm
|
|
sample = inds[0].value[:500]
|
|
result = self.classifier.classify(sample)
|
|
if result.label != attack_type and result.confidence > 0.7:
|
|
# ML disagrees, adjust confidence
|
|
confidence = min(ind.confidence for ind in inds) * 0.7
|
|
else:
|
|
confidence = max(ind.confidence for ind in inds)
|
|
else:
|
|
confidence = max(ind.confidence for ind in inds)
|
|
|
|
rule_name = f"waf_protect_{attack_type}"
|
|
terraform = self._managed_rule_terraform(rule_name, attack_type)
|
|
|
|
severity = "critical" if attack_type in ("sqli", "rce") else "high"
|
|
|
|
proposals.append(RuleProposal(
|
|
rule_name=rule_name,
|
|
rule_type="managed_rule",
|
|
terraform_code=terraform,
|
|
severity=severity,
|
|
confidence=confidence,
|
|
justification=f"Detected {len(inds)} {attack_type.upper()} attack patterns in traffic. "
|
|
f"Enabling managed ruleset protection.",
|
|
threat_indicators=[ind.value[:100] for ind in inds[:3]],
|
|
compliance_refs=self._get_compliance_refs(attack_type),
|
|
estimated_impact=f"Blocks {attack_type.upper()} attacks via managed rules",
|
|
auto_deploy_eligible=confidence >= self.auto_deploy_min_confidence,
|
|
tags=["auto-generated", "threat-intel", attack_type, "managed-rules"]
|
|
))
|
|
|
|
return proposals
|
|
|
|
def _generate_ua_rules(self, indicators: List[Any]) -> List[RuleProposal]:
|
|
"""Generate user-agent blocking rules."""
|
|
proposals: List[RuleProposal] = []
|
|
|
|
scanner_uas = [i for i in indicators if "scanner" in i.tags or "bad_ua" in i.tags]
|
|
|
|
if scanner_uas:
|
|
# Extract unique patterns
|
|
patterns = list(set(i.value[:100] for i in scanner_uas))[:10]
|
|
|
|
rule_name = "waf_block_scanner_uas"
|
|
terraform = self._ua_block_terraform(rule_name, patterns)
|
|
|
|
proposals.append(RuleProposal(
|
|
rule_name=rule_name,
|
|
rule_type="pattern_block",
|
|
terraform_code=terraform,
|
|
severity="medium",
|
|
confidence=0.75,
|
|
justification=f"Blocking {len(patterns)} scanner/bot user agents detected in traffic.",
|
|
threat_indicators=patterns,
|
|
compliance_refs=["Bot Protection"],
|
|
estimated_impact="Blocks automated scanning tools",
|
|
auto_deploy_eligible=False,
|
|
tags=["auto-generated", "threat-intel", "scanner", "user-agent"]
|
|
))
|
|
|
|
return proposals
|
|
|
|
def _generate_managed_rule_proposals(
|
|
self,
|
|
indicators: List[Any]
|
|
) -> List[RuleProposal]:
|
|
"""Generate recommendations to enable managed rulesets."""
|
|
proposals: List[RuleProposal] = []
|
|
|
|
# Check for attack types that should have managed rules
|
|
attack_types_seen = set()
|
|
for ind in indicators:
|
|
for tag in ind.tags:
|
|
if tag in ("sqli", "xss", "rce", "path_traversal"):
|
|
attack_types_seen.add(tag)
|
|
|
|
# Check existing terraform for gaps
|
|
tf_path = self.workspace / "terraform" / "waf.tf"
|
|
existing_coverage = set()
|
|
|
|
if tf_path.exists():
|
|
try:
|
|
content = tf_path.read_text().lower()
|
|
for attack_type in ["sqli", "xss", "rce"]:
|
|
if attack_type in content or f'"{attack_type}"' in content:
|
|
existing_coverage.add(attack_type)
|
|
except Exception:
|
|
pass
|
|
|
|
# Propose missing protections
|
|
for attack_type in attack_types_seen - existing_coverage:
|
|
rule_name = f"waf_enable_{attack_type}_protection"
|
|
terraform = self._managed_rule_terraform(rule_name, attack_type)
|
|
|
|
proposals.append(RuleProposal(
|
|
rule_name=rule_name,
|
|
rule_type="managed_rule",
|
|
terraform_code=terraform,
|
|
severity="high",
|
|
confidence=0.9,
|
|
justification=f"Traffic shows {attack_type.upper()} attack patterns but no protection enabled. "
|
|
f"Recommend enabling Cloudflare managed {attack_type.upper()} ruleset.",
|
|
threat_indicators=[],
|
|
compliance_refs=self._get_compliance_refs(attack_type),
|
|
estimated_impact=f"Enables {attack_type.upper()} protection",
|
|
auto_deploy_eligible=True,
|
|
tags=["auto-generated", "gap-analysis", attack_type, "managed-rules"]
|
|
))
|
|
|
|
return proposals
|
|
|
|
def _ip_block_terraform(
|
|
self,
|
|
rule_name: str,
|
|
ips: List[str],
|
|
action: str = "block"
|
|
) -> str:
|
|
"""Generate Terraform for IP blocking rule."""
|
|
if len(ips) == 1:
|
|
expression = f'(ip.src eq {ips[0]})'
|
|
else:
|
|
ip_list = " ".join(ips)
|
|
expression = f'(ip.src in {{{ip_list}}})'
|
|
|
|
return f'''resource "cloudflare_ruleset" "{rule_name}" {{
|
|
zone_id = {self.zone_id_var}
|
|
name = "{rule_name.replace('_', ' ').title()}"
|
|
description = "Auto-generated by Phase 7 WAF Intelligence"
|
|
kind = "zone"
|
|
phase = "http_request_firewall_custom"
|
|
|
|
rules {{
|
|
action = "{action}"
|
|
expression = "{expression}"
|
|
description = "Block threat intel IPs"
|
|
enabled = true
|
|
}}
|
|
}}
|
|
'''
|
|
|
|
def _managed_rule_terraform(self, rule_name: str, attack_type: str) -> str:
|
|
"""Generate Terraform for managed ruleset."""
|
|
ruleset_map = {
|
|
"sqli": "efb7b8c949ac4650a09736fc376e9aee", # Cloudflare SQLi
|
|
"xss": "c2e184081120413c86c3ab7e14069605", # Cloudflare XSS
|
|
"rce": "4814384a9e5d4991b9815dcfc25d2f1f", # Cloudflare RCE (example)
|
|
}
|
|
|
|
ruleset_id = ruleset_map.get(attack_type, "efb7b8c949ac4650a09736fc376e9aee")
|
|
|
|
return f'''resource "cloudflare_ruleset" "{rule_name}" {{
|
|
zone_id = {self.zone_id_var}
|
|
name = "{attack_type.upper()} Protection"
|
|
description = "Managed {attack_type.upper()} protection - Phase 7 WAF Intelligence"
|
|
kind = "zone"
|
|
phase = "http_request_firewall_managed"
|
|
|
|
rules {{
|
|
action = "execute"
|
|
action_parameters {{
|
|
id = "{ruleset_id}"
|
|
}}
|
|
expression = "true"
|
|
description = "Enable {attack_type.upper()} managed ruleset"
|
|
enabled = true
|
|
}}
|
|
}}
|
|
'''
|
|
|
|
def _ua_block_terraform(self, rule_name: str, patterns: List[str]) -> str:
|
|
"""Generate Terraform for user-agent blocking."""
|
|
# Escape patterns for regex
|
|
safe_patterns = [re.escape(p)[:50] for p in patterns]
|
|
pattern_regex = "|".join(safe_patterns)
|
|
|
|
return f'''resource "cloudflare_ruleset" "{rule_name}" {{
|
|
zone_id = {self.zone_id_var}
|
|
name = "Block Scanner User Agents"
|
|
description = "Auto-generated by Phase 7 WAF Intelligence"
|
|
kind = "zone"
|
|
phase = "http_request_firewall_custom"
|
|
|
|
rules {{
|
|
action = "block"
|
|
expression = "(http.user_agent contains \\"sqlmap\\" or http.user_agent contains \\"nikto\\" or http.user_agent contains \\"nmap\\" or http.user_agent contains \\"masscan\\")"
|
|
description = "Block known scanner user agents"
|
|
enabled = true
|
|
}}
|
|
}}
|
|
'''
|
|
|
|
def _get_compliance_refs(self, attack_type: str) -> List[str]:
|
|
"""Get compliance references for an attack type."""
|
|
refs = {
|
|
"sqli": ["PCI-DSS 6.6", "OWASP A03:2021"],
|
|
"xss": ["OWASP A07:2017", "CWE-79"],
|
|
"rce": ["OWASP A03:2021", "CWE-78"],
|
|
"path_traversal": ["CWE-22", "OWASP A01:2021"],
|
|
}
|
|
return refs.get(attack_type, [])
|
|
|
|
|
|
# CLI for testing
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
workspace = sys.argv[1] if len(sys.argv) > 1 else "."
|
|
|
|
# Create mock indicators for testing
|
|
mock_indicators = [
|
|
type("ThreatIndicator", (), {
|
|
"indicator_type": "ip",
|
|
"value": "192.0.2.100",
|
|
"severity": "critical",
|
|
"confidence": 0.95,
|
|
"sources": ["abuseipdb", "honeypot"],
|
|
"tags": ["threat-intel"],
|
|
"hit_count": 150,
|
|
"context": {"abuse_score": 95},
|
|
})(),
|
|
type("ThreatIndicator", (), {
|
|
"indicator_type": "pattern",
|
|
"value": "' OR '1'='1",
|
|
"severity": "high",
|
|
"confidence": 0.85,
|
|
"sources": ["log_analysis"],
|
|
"tags": ["sqli", "attack_pattern"],
|
|
"hit_count": 50,
|
|
"context": {},
|
|
})(),
|
|
type("ThreatIndicator", (), {
|
|
"indicator_type": "ua",
|
|
"value": "sqlmap/1.0",
|
|
"severity": "medium",
|
|
"confidence": 0.9,
|
|
"sources": ["log_analysis"],
|
|
"tags": ["scanner", "bad_ua"],
|
|
"hit_count": 25,
|
|
"context": {},
|
|
})(),
|
|
]
|
|
|
|
proposer = WAFRuleProposer(workspace_path=workspace)
|
|
batch = proposer.generate_proposals(indicators=mock_indicators)
|
|
|
|
print(batch.to_markdown())
|